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In this work, new plain and composite high-energy solitons of the cubic–quintic Swift–Hohenberg equation were
numerically found. Starting from a composite pulse found by Soto-Crespo and Akhmediev and changing some
parameter values allowed us to find these high energy pulses. We also found the region in the parameter space in
which these solutions exist. Some pulse characteristics, namely, temporal and spectral profiles and chirp, are
presented. The study of the pulse energy shows its independence of the dispersion parameter but its dependence
on the nonlinear gain. An extreme amplitude pulse has also been found. © 2016 Chinese Laser Press
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1. INTRODUCTION
Laser systems with passive mode locking can be described by
the cubic–quintic complex Ginzburg–Landau (CGLE) and
Swift–Hohenberg (CSHE) equations [1]. Both equations have
a wide diversity of analytical and numerical solutions, as can
be seen for example in [1–6], and references therein. Among
other characteristics, both models have in common two par-
ticular numerical solutions: the plain and the composite
solitons [6–9].

Recently, ultrashort high-energy pulses and extreme ampli-
tude spikes, solutions of the CGLE, have been found [10,11].

Such diversity and complexity of solutions is due, in part,
to the fact that the CGLE has several free parameters. A small
change of one of these parameters can have a huge impact on
the nature of the solution [11].

Some technological applications of high-energy pulses
are, for example, dissipative soliton fiber lasers in the
normal dispersion regime or with parameter management
[12–14].

One of the restrictions of the CGLE model concerns
spectral filtering, which is limited to a second-order term,
characterized by a single maximum spectral response. In gen-
eral, in experiments the gain spectrum is large and might
have several maxima. For more realistic modeling it is nec-
essary to add higher-order spectral filtering terms. The
addition of a fourth-order spectral filtering term into the
cubic–quintic CGLE transforms it into the CSHE [1,6].
The role of this higher-order term in spectral filtering has
been studied in [6]. In particular, narrow composite pulse
(NCP) and wider composite pulse (WCP) were numeri-
cally found.

In this work new plain and composite high-energy
solitons of the CSHE, and their region of existence in the plane
(ε, D), have been numerically found. Some pulse characteris-
tics are presented. Additionally, a plain pulse with extreme
amplitude peak was also found.

2. THEORY
The CSHE can be written in the following form [1,6]:

iuZ � D
2
uTT � juj2 u� νjuj4u � iδu� iβuTT � iεjuj2u

� iμjuj4u� iγuTTTT ; (1)

where Z is the propagation distance or the cavity round-trip
number, T is the retarded time in a frame of reference moving
with the group velocity, and u is the normalized complex
envelope of the optical field. On the left-hand side, D repre-
sents the cavity dispersion, with D > 0 in the anomalous re-
gime and D < 0 in the normal regime, and ν corresponds, if
negative, to the saturation of the nonlinear refractive index.
On the right-hand side, δ represents the difference between
linear gain and loss; β and γ account for spectral filtering
and higher order spectral filtering, respectively. The terms
with ε and μ�μ < 0�, represent the nonlinear gain and the
saturation of the nonlinear gain, respectively.

The CSHE given by Eq. (1) has been numerically solved,
with a split-step Fourier symmetric method, with a time step
ΔT � 0.03125 and a distance step ΔZ � 0.0003, described for
example in [15]. Absorbing boundary conditions were used, as
presented in [16]. In order to guarantee the convergence to a
single pulse, an initial condition of the form 2 sech�2T� has
been considered. For initial conditions with a larger width
multiple pulses can be formed.

3. RESULTS
At this stage we refer that the starting point for this work was
the composite pulse (CP), discovered in [6] for the following
set of parameter values: β � −0.3, δ � −0.5, ε � 1.6, μ � −0.1,
ν � 0, and γ � 0.05. We might ask, what is the impact of a
small change of the saturation of the nonlinear gain, μ, on
the nature of the solution? The pulse amplitude is gradu-
ally reduced as μ becomes slightly more negative. On the other
hand, as μ → 0 the pulse amplitude grows. If μ � 0, blow-up
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occurs. Hence, in this case, the saturation of the nonlinear
gain is the physical mechanism that prevents the growth of
the pulse amplitude against blow-up, since ν � 0.

The region of existence in the plane (ε, D) of the high-
energy pulses that were found in this work is presented in
Fig. 1, for the following parameter values: β � −0.3, δ � −0.5,
μ � −0.001, ν � 0, and γ � 0.05. Note that these values are
similar to the ones found in [6], except the μ value.

Moreover, the filter spectral response, T�ω� �
exp�δ − βω2 − γω4�, exhibits a double peak structure which
was also the one presented in [6]. Dissipative pulses exist
for both normal (D < 0) and anomalous (D > 0) dispersion
regimes. This region extends beyond the left and right boun-
daries for jDj > 2. Beyond the lower and upper boundaries
dissipative solitons do not exist. Below the lower boundary
the pulses in general decay or coexist with moving strongly
asymmetric pulses. Above the upper boundary the pulses
expand (ε≳ 1.5).

Typical pulse shapes and spectra are presented in Figs. 2–4.
In Fig. 2 the pulses represented correspond to the triangles
along the vertical line D � 0 (the zero dispersion point) in
Fig. 1. For each distinct value ofD similar profiles were found.
From Fig. 2(a), as the cubic nonlinear gain, ε, increases, the
pulses shapes change dramatically from plain pulses (PPs) to
NCP and WCP. In general, for all values of D in the region,
NCP and WCP coexist for ε > 1.3. It can be seen that the
higher amplitude peak pulse (≃40) or peak intensity, 1600, oc-
curs for a nonlinear gain value of ε � 1.5. This amplitude is
significantly higher if compared with the maximum value of
the peak pulse (≃30) for ε � 3, presented in [10]. In the spec-
tral domain, with the increase of ε the pulses’ spectral ampli-
tudes, �ju�f �j; f � ω

2π�, grow [Fig. 2(b)]. The spectra of PPs
exhibit a single maximum, whereas the CPs exhibit a dual
peak spectra. These results are in good agreement with the
results obtained in [6–9] for PPs and CPs with lower energies
in the context of the Ginzburg–Landau and Swift–Hohenberg
equations, respectively. However, the pulses’ spectral widths
are smaller than the ones presented in [10].

The pulse energies, Q � R�∞
−∞ ju�z; T�j2dT , are 116, 448,

1179, and 2051 for ε � 0.4, 1.3, 1.35, and 1.5, respectively.
The pulse energies Q versus D are presented in Fig. 3 for

three different values of nonlinear gain, ε. The pulse energies
are similar or even higher than the ones presented in [10].

The results in Fig. 3 show that the pulse energies are practi-
cally independent of the values of dispersion D in both the
normal and anomalous regimes, and increase as ε increases.
For ε � 0.6 and ε � 1.0 only PPs are formed, and for ε � 1.4
NCPs and WCPs coexist with different values of energy. In
general, for the higher considered values of ε, the energies
of each kind of pulse slightly decrease with D, whereas for
the lower considered values the opposite occurs. This
behavior contrasts with the unlimited growth of energy as D

Fig. 1. Region of existence of dissipative solitons (darker area), in
the plane (ε, D), for the following parameter values: β � −0.3,
δ � −0.5, μ � −0.001, ν � 0, and γ � 0.05. Dissipative pulses do not
exist beyond the lower and upper boundaries. Nevertheless, their
region of existence extends beyond the left and right boundaries,
for values of jDj > 2. The marks (circles, squares, and triangles) cor-
respond to examples of pulses presented in the following figures.

Fig. 2. (a) Amplitude and (b) spectral pulse profiles for four values of
ε, namely, ε � 0.4 (thick dashed curves), ε � 1.3 (solid curves),
ε � 1.35 (dashed–dotted curves), and ε � 1.5 (dashed curves). The
curves correspond to the triangles along the vertical line D � 0 in
Fig. 1. (The other parameter values are β � −0.3, δ � −0.5, μ �
−0.001, ν � 0, and γ � 0.05.)

Fig. 3. Energy Q of dissipative pulses versus dispersion parameter,
D, for three different values of ε, associated with PPs, NCPs, and
WCPs.
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decreases, for similar values of D as the high-energy pulses
presented in [10].

Figures 4 and 5 illustrate the two different kinds of high-
energy pulses found, namely PPs and CPs.

The pulses represented in Fig. 4 correspond to the squares
along the horizontal line ε � 1.2 in Fig. 1. In Fig. 4(a) the pulse
amplitude profiles are presented for four different values ofD.
All the four pulses shapes are pretty similar and consequently
almost independent of D. The major difference occurs at the
pulse wings.

As D increases, less energy is concentrated at the wings,
while the peak amplitude remains almost the same.

Figure 4(b) shows that the pulses are chirped, with a linear
chirp across the pulse central region. In the transition be-
tween the pulse central region and the pulse wings a small
deep and a small crest occur at the leading and trailing edges,
respectively. The presence of chirp makes it possible to carry
out pulse compression and hence obtain high-energy, ultra-
short pulses [14].

Figure 4(c) shows the pulses’ spectra profiles. As should be
expected, the pulses’ spectra are very similar to each other.
The spectrum of each pulse has a single maximum, and most
of the energy is concentrated between the frequencies −2 and
2. If we compare theses pulses with the ones obtained in the
context of CGLE [10], for several values of D, it can be seen
that in the temporal domain the pulses exhibit higher ampli-
tudes than the CGLE pulses, for a smaller value of the non-
linear gain parameter. Nevertheless, in the spectral domain
their spectral widths are much smaller than the ones exhibited
by the CGLE pulses.

Figure 5 presents the pulses that correspond to the circles
along the horizontal line ε � 1.4 in Fig. 1.

In Fig. 5(a) the pulses’ amplitude profiles are presented for
four different values of D. Two different kind of pulses are
formed, namely a NCP and a WCP. The represented pulses
are WCPs for D < 0 and NCPs for D > 0. Both kinds of pulses
coexist for ε � 1.4 and for all considered values of D in Fig. 1,
with similar amplitude profiles. In general, if a NCP is gener-
ated from a 2 sech�2T�, the coexisting WCP can be obtained
from an initial condition whose width is slightly larger. And if
a WCP is generated, a NCP can be obtained from an initial
condition whose width is slightly smaller. As can be seen,
the pulses’ peak amplitudes and profiles are almost the same
for different values of D.

In Fig. 5(b) the pulses’ chirps are represented in the tem-
poral domain. Across the pulses’ central region the chirp is
linear. Small deeps and crests appear in the transition from
the pulses’ central region to the pulses’ edges, following
the multipeak structure. In these cases the chirp is far for
being linear across the whole pulse. However, some compres-
sion might be possible. A detailed discussion of high-energy
chirped pulse compression is presented in [14].

Pulses spectral profiles are represented in Fig. 5(c). As
should be expected, the NCP and WCP have dual peak spec-
tra. The spectral width is similar for both cases. Nevertheless,
the spectral peak structure is different, with the WCPs having
higher peak amplitude than the NCPs. On the other hand, the
deeps between the two peaks, as well as the peak separations,
are larger for the WCPs than for NCPs.

The amplitude of the pulses may have a substantial increase
if we change the parameter values as presented in Fig. 6, for

Fig. 4. Pulses’ (a) amplitude, (b) chirp, and (c) spectra for four differ-
ent values of D. The pulse curves correspond to the squares along the
horizontal line ε � 1.2 in Fig. 1. (The other parameter values are
β � −0.3, δ � −0.5, μ � −0.001, ν � 0, and γ � 0.05.)

Fig. 5. Pulse (a) amplitudes, (b) chirp, and (c) spectra for the same
four different values of D as in Fig. 4. The pulses represented are
WCPs for D < 0 and NCPs for D > 0. Similar profiles of WCPs and
NCPs were obtained in both dispersion regimes. The pulse curves cor-
respond to the circles along the horizontal line ε � 1.4 in Fig. 1. (The
other parameter values are β � −0.3, δ � −0.5, μ � −0.001, ν � 0, and
γ � 0.05.)
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the following parameter values: D � 0, β � −0.3, δ � −0.5,
ε � 0.35, μ � 0, ν � −0.000025, and γ � 0.05.

Figure 6 shows the pulse’s (a) amplitude evolution, (b) am-
plitude, and (c) spectrum profiles of an extreme amplitude
plain pulse solution obtained from an initial condition of
2 sech�2T�, with ΔT � 0.0057 and ΔZ � 0.00001. The charac-
teristics of this pulse are similar to the PP presented in Fig. 4.
As can be seen, the pulse peak amplitude is almost 326 for
peak intensity 106207, with energy Q � 9496. To the best of
our knowledge, this is one of the highest peak amplitudes
found in the context of the CSHE and CGLE. In this case
the physical mechanism that restricts the growth of the pulse
amplitude against blow-up is the saturation of the nonlinear
refractive index, ν, since μ � 0. Based on our results we pre-
dict the existence of even higher extreme amplitude pulses,
but further research will be necessary.

4. CONCLUSION
In conclusion, new plain and composite high-energy solitons
of the cubic–quintic Swift–Hohenberg equation have been

numerically found. These new solutions have high energy if
compared with the traditional PPs and CPs known for this
model. A region of existence of these pulses was also found
in the plane (D, ε). The pulses exist in both normal and anoma-
lous dispersion regimes. For a specific value of the cubic non-
linear gain, ε, the energy of each kind of pulse, namely PP,
NCP, and WCP, is almost independent of D. However, the
pulses’ energies are high but finite. A change of the parameter
values allows us to find an extreme amplitude plain pulse.
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